etzn Energie-Forschungszentrum Niedersachsen

MAGS2 EP6:

Entwicklung numerischer Analysemodelle zur lokalen seismischen Gefährdungseinschätzung vor Bohrbeginn und langfristige Bewertung von Geothermiefeldern unter Berücksichtigung THM:C gekoppelter Prozesse

Abschlussworkshop

Michael Z. Hou, Yang Gou, Wentao Feng, Wei Xing, Frank Fiedler

Bochum, 4-5 Oktober 2016

Inhalt

- Methoden zur Seismizitätseinschätzung vor Bohrbeginn
- Laboruntersuchung
- Methodische Entwicklung
- Betrachtung komplexer Geothermiefelder
 - > Fallbeispiel 1: Unterhaching und Kirchstockach (Großraum München)
 - Fallbeispiel 2: Landau (Südpfalz)
- Zusammenfassung

Methoden zur Seismizitätseinschätzung vor Bohrbeginn

Laboruntersuchung

Bestimmung von Gesteinsparametern möglichst nahe am Reservoirdruck und an Temperatur \rightarrow Eingangsparameter für die Modellierungen

Versuchsgerät

Gesteinsprobe (Kalkstein)

Michael Z. Hou EFZN / ITE der TU Clausthal

Laboruntersuchung

Einfluss der Verformungsrate auf Festigkeit (TC-Versuch)

Michael Z. Hou EFZN / ITE der TU Clausthal

Laboruntersuchung

Michael Z. Hou EFZN / ITE der TU Clausthal

Konzept TOUGHREACT TOUGH2 (TOUGH2+ Reservoir-Geochemie) simulator P, T, S, Stimulationsphase **Betriebsphase** THM $\Delta \phi, \Delta \kappa,$ THM:C $\Delta \phi, \Delta \kappa,$ $\Delta \phi, \Delta \kappa,$ P, T, S (Rutqvist & Tsang 2003, (Hou et al. 2010) ΔPC Ausfällung/ ΔP_C (D) (D) Hou & Zhou 2010) Auflösung Boden- & Boden- & Fels-Fels-Mechanik Mechanik freigesetzte Energie $M_w = \frac{2}{3} \log M_0 - 6,07$ freigesetzte Energie Minimierung der Georisiken **Optimierung von EGS**

Michael Z. Hou EFZN / ITE der TU Clausthal

Entwicklung des THM-Kopplungsmodells basierend auf Klufttensor Mechanisches Modell für geklüftete Gesteinsmassen

Der elastische Anteil nach Huang et al. 1995

$$\Delta \varepsilon_{ij} = C_{ijkl} \Delta \sigma_{kl} \qquad C_{ijkl} = C_{ijkl}^I + C_{ijkl}^J \qquad C_{ijkl}^J = \sum_{m=1}^{N} n_i^m L_{jj}^m C_{jL}^m L_{kl}^m n_k^m \frac{1}{S^m}$$

Der plastische Anteil nach Mohr-Coulomb Modell und Jing et al. 1994

$$F = \sqrt{\left(\frac{\tau_x}{\mu_x}\right)^2 + \left(\frac{\tau_z}{\mu_z}\right)^2 + \sigma_n - C} \quad Q = \sqrt{\left(\frac{\tau_x}{\mu_x}\right)^2 + \left(\frac{\tau_z}{\mu_z}\right)^2 + \sigma_n \sin\alpha} \quad dW^p = \sigma_j du_j^p$$

 $\mu_x = \tan(\phi_r + \alpha_x) \quad \mu_z = \tan(\phi_r + \alpha_z) \quad \alpha_x = \alpha_{x0} e^{-DW_p} \quad \alpha_z = \alpha_{z0} e^{-DW_p}$

Das hydro-mechanisch gekoppelte Modell

unaszentrum

Niedersachse

Claustha

$$\begin{split} \phi &= 1 - (1 - \phi_i) \cdot e^{-\varepsilon_v} \qquad k_{ij} = k_{ij}^I + k_{ij}^J = k^I \delta_{ij} + k_{ij}^J \\ k^I &= k_i^I \left(\frac{\phi}{\phi_i}\right)^n \qquad k_{ij}^J = \frac{1}{12} \left(F_{kk} \delta_{ij} - F_{ij}\right) \quad F_{ij} = \sum_{k=1}^N \frac{1}{S_k} b_k^3 n_{ik} n_{jk} \\ b &= b_0 + \Delta b = b_0 + f \Delta u_n \end{split}$$

rock mechanics Michael

М

Mechanisches Modell für eine geklüftete Gesteinsmasse (M) Der plastische Anteil (Sonderfall: isotrope Schubfestigkeit)

hungszentrum

Niedersachsen

lite M

Michael Z. Hou EFZN / ITE der TU Clausthal

Berechnung der Slip-Tendency der Störungen, Magnitude der seismischen Ereignisse sowie Herstellung des synthetischen Katalogs

> Slip-Tendency der Störungen $\eta = \frac{\tau(\sigma_{ij}, n_i)}{\tau_f(\sigma_{ij}, n_i, \varphi, c)} \quad 0 \le \eta \le 1$

> seismischer Momenttensor (Aki & Richards 2002) $M_{ij} = G(n_i s_j + n_j s_i) + \lambda \delta_{ij} \vec{s} \cdot \vec{n}$

- das skalare seismische Moment (Shearer 2009) $M_0 = \sqrt{\frac{1}{2} \sum_{ii} M_{ij}^2}$
- das gesamte seismische Moment in einem Zeitschritt

$$M = \sum_i M_0^i$$

• Momentmagnitude
$$M_w = \frac{2}{3}\log_{10}M - 6.07$$

 τ Schubspannung auf der Störungsebene, σ_{ij} Spannungstensor, n_i Flächennormal der Störung, $\varphi \& c$ Schubfestigkeitsparameter der Störung G Schubmodul, s_i plastische Verschiebung der Störung, λ Lame-Konstante

TU Clausthal TU Clausthal TO Cla

Implementierung des THM-Kopplungsmodells in TOUGH2MP-FLAC3D

Betrachtung komplexer Geothermiefelder

Energie-Forschungszentrum

Niedersachsen

Fallbeispiel 1: Unterhaching

Geothermie Unterhaching + Kirchstockach (Großraum München)

Fallbeispiel 1: Unterhaching

In-situ Spannungen

Michael Z. Hou EFZN / ITE der TU Clausthal ¹⁴

Temperaturverteilung nach 10 Jahren (Basis, $K_H = 1,07, K_h = 0,92$)

1st Haupteinströmungszone

Energie-Forschungszentrum

Niedersachsen

Schnitt durch Injektion- und Produktionsbohrung

Spannungsänderung entlang der Injektionsbohrung (Basis)

 \Rightarrow Große Spannungsreduzierung (-23 MPa bei t= 10a)

 \Rightarrow Reduzierung der jeweiligen Komponenten nicht gleichmäßig ($\Delta \sigma_{2,3} > \Delta \sigma_1$)

Kreuze: Hauptspannungen; Farbe: maximale Schubspannung (Basis)

- ⇒ Neuausrichtung der Spannungen
- ⇒ Schubspannung vergrößert sich (maximal 12 MPa)
- \Rightarrow Max. Schubspannung in der Nähe der Störung, aber nicht in der Injektionszone

Slip-Tendency

⇒ Entwicklung der Slip-Tendency der, wegen der geringsten Entfernung zur Re-Injektionsbohrung, risikoreichsten Störung 9 (0,12 → 0,68 → 0,51, ohne Versagen). Maximale Slip-Tendency (0,68) tritt im zweiten Betriebsjahr auf. Danach nimmt die Gefährdung wieder ab.

Numerische Untersuchungen zu der Produktionsphase (Basis)

Szenariobetrachtung: gleichzeitiger Betrieb von 2 Geothermie-Anlagen mit einer Injektions- bzw. Produktionsrate von 120 l/s x 10 Jahren (Re-Injektionstemp.: 60 °C)

⇒ Keine gegenseitigen Beeinflussungen bezogen auf Temperatur

Zeitliche Momentmagnitude und Mechanismen des Hypozentrums (Case 3b; $K_H = 1,08$; $K_h = 0,53$)

 \Rightarrow viele kleine und wenige große Ereignisse (max. Magnitude 1,67 nach 7,0 Jahren)

⇒ Mechanismus des Hypozentrums zeigt Slip entlang der Störungszone

Häufigkeitsverteilung und Gutenberg-Richter Beziehung (Case 3b; $K_H = 1,08$; $K_h = 0,53$)

 \Rightarrow insgesamt 166.080 Ereignisse; häufigste Magnitude -1.0

 \Rightarrow berechnete *a* und *b* sind jeweils 3.0 und 1.65

Fallbeispiel 1: Unterhaching - Betriebsdaten

Numerische Untersuchungen zu der Produktionsphase

⇒ Die gemessene zeitliche Entwicklung von Druck (BHP) und Temperatur (BHT) der Injektionszone von Februar 2008 bis Dezember 2010 wurde gematched.

Fallbeispiel 1: Unterhaching - Betriebsdaten

Numerische Untersuchungen zu der Produktionsphase (Variation)

- ⇒ Bei Reduzierung der Injektionstemperatur erhöht sich die max. Slip-Tendency. Case 1, 2a, 2b keine Ereignisse bis Ende 2010 ⇒ Spannungszustand ist entscheidend
- ⇒ Die simulierten seismischen Ereignisse von Case 3b ($K_H/K_h = 1,08/0,53$) sind vergleichbar mit den gemessenen Ereignissen (Megies & Wassermann 2014). Eine Reduzierung der Magnitude ist zu erkennen. (**Die Gefährdung nimmt ab.**)

Clausth

Energie-Forschungszentrum

Niedersachsen

- > Numerische Untersuchung zu der Stimulationsphase
- Numerische Untersuchung zu der Produktionsphase

12.12.2010, 2.0, 3.04±1.425km

Störungen und Schicht

2.8<u>+</u>0.6km

Simulationsmodell

Injektionsplan (Stimulationsphase)

Numerische Untersuchungen zu der Stimulationsphase

- \Rightarrow Die gemessene zeitliche Entwicklung des Wasserdrucks während der Stimulationsphase wurde gematched (Historiematching).
- Geometrie der Scherzone: 2.780 m \times 90 m \times 1.070 m

Clausth

Energie-Forschungszentrum

Niedersachsen

Entwicklung der Länge, Höhe und Breite der plastischen Zone (Stimulation)

efzn Energie-Forschungszentrum Niedersachsen TU Clausthal

Michael Z. Hou EFZN / ITE der TU Clausthal ³⁰

Entwicklung des Drucks in der Kluft (Stimulation)

Claustha

-Forschungszentrum

Niedersachsen

lite M

GS2 Michael Z. Hou EFZN / ITE der TU Clausthal

Entwicklung der seismischen Ereignisse und Magnitude (Stimulation)

Fallbeispiel 2: Landau - Produktion

Numerische Untersuchungen zu der Produktionsphase (Betriebsdaten)

⇒ Die gemessene zeitliche Entwicklung von Druck und Temperatur von März 2008 bis November 2009 wurde gematched.

Fallbeispiel 2: Landau - Produktion

Momentmagnitude und seismische Ereignisse

Fallbeispiel 2: Landau - Produktion

Numerische Untersuchungen zu der Produktionsphase (Variationen)

- **a**: nur Injektionsrate reduziert \Rightarrow Magnitude \downarrow , Slip-Tendency \approx
- **b**: nur Produktionsrate reduziert \Rightarrow Magnitude \approx , Slip-Tendency \downarrow
- **c**: Injektions- und Produktionsrate beide reduzieren \Rightarrow Magnitude \downarrow , Slip-Tendency \downarrow

Injektionsrate beeinflusst Magnitude, während Produktionsrate Slip-Tendency beeinflusst !

 $\begin{array}{l} \mbox{Gegenmaßnahme aus dem Vergleich mit Basisergebnissen} \Rightarrow \mbox{Im Problemfall gleichzeitige} \\ \mbox{Reduzierung der Injektions-/Produktionsrate} \end{array}$

Zusammenfassung

Laboruntersuchung

- > Triaxiale Versuche wurden mit Gesteinsproben aus Aufschluss (Kalkstein) durchgeführt. Parameter, wie *E*, *UCS*, *C* und φ wurden ermittelt.
- Methodische Entwicklung
 - Das THM-gekoppelte Modell wurde in TOUGH2MP-FLAC3D implementiert. Das Modell gilt für Einzel-/Mehrkluftsysteme.
- Numerische Untersuchung zur Geothermie Unterhaching
 - Porendruckveränderung ist nicht groß (± 2 MPa). Die kalte Wasserfront ist nach 10 Jahren noch weit von der Produktionsbohrung entfernt und die Temperatur des Produktionswassers ändert sich noch nicht (120 °C).
 - ► Injektion von kaltem Wasser führt zu großer Spannungsreduzierung (-23 MPa). Die Reduzierung der jeweiligen Spannungskomponenten ist nicht gleichmäßig ($\Delta \sigma_{2,3} > \Delta \sigma_1$). Es gibt eine Neuausrichtung der Spannungen. Die Schubspannung vergrößert sich insbesondere in der Nähe von Störungen (maximal 12 MPa).

Zusammenfassung

- Entwicklung der slip tendency der risikoreichsten Störung 9 (wegen der geringsten Entfernung zur Re-Injektionsbohrung) ist 0,12→0,68→0,51, ohne Versagen, jedoch ohne Berücksichtigung sprunghafter Änderungen der Betriebsdaten, maximale slip tendency (0,68) tritt bei Störung 9 im zweiten Betriebsjahr auf, danach nimmt die Gefährdung wieder ab.
- ➢ Die in-situ Spannungen spielen eine große Rolle. In Variation 4 (K_H = 1,16, K_h = 0,45) tritt schon (Schub) Versagen auf.
- Bei gleichzeitigem Betrieb von Geothermie Unterhaching und Kirchstockach gibt es keine gegenseitige Beeinflussungen.
- Die gemessene zeitliche Entwicklung von Druck und Temperatur der Injektionszone von Februar 2008 bis Dezember 2010 wurde gematched.
- ➢ Bei Reduzierung der Injektionstemperatur erhöht sich die max. Slip-Tendency. Case 1, 2a, 2b keine Ereignisse bis Ende 2010 ⇒ Spannungszustand ist entscheidend
- ➢ Die simulierten seismischen Ereignisse von Case 3b (K_H/K_h = 1,08/0,53) sind vergleichbar mit den gemessenen Ereignissen. Eine Reduzierung der Magnitude ist zu erkennen. (Die Gefährdung nimmt ab.)

eite

U Claustha

Niedersachse

Michael Z. Hou EFZN / ITE der TU Clausthal ³⁷

Zusammenfassung

- Numerische Untersuchung zur Geothermie Landau
 - Die gemessene zeitliche Entwicklung des Wasserdrucks bei der Stimulationsphase wurde gematched (Historiematching).
 - Geometrie der stimulierten Scherzone: 2.780 m x 90 m x 1.070 m
 - Die gemessene zeitliche Entwicklung von Druck und Temperatur von März 2008 bis November 2009 wurde gematched.
 - Injektionsrate beeinflusst Magnitude, während Produktionsrate Slip-Tendency beeinflusst!
 - Gegenmaßnahme aus dem Vergleich mit Basisergebnissen ⇒ Im Problemfall gleichzeitige Reduzierung der Injektions-/Produktionsrate

Vielen Dank für die Aufmerksamkeit!

Das Verbundprojekt MAGS2

Mikroseismische Aktivität geothermischer Systeme

Vom Einzelsystem zur großräumigen Nutzung

wird finanziert durch das Bundesministerium für Wirtschaft und Energie und betreut durch den Projektträger Jülich.

Förderkennzeichen: 0325662A-G

Projektträger für

Bundesministerium für Wirtschaft und Energie

